New Jersey Core Curriculum Content Standards for Mathematics – Grade 7

Alignment to Acellus®

Standard 4.1.7: Number And Numerical Operations

A. Number Sense

1. Extend understanding of the number system by constructing meanings for the following (unless otherwise noted, all indicators for grade 7 pertain to these sets of numbers as well):
 - Rational numbers
 - Percents
 - Whole numbers with exponents

2. Demonstrate a sense of the relative magnitudes of numbers.

3. Understand and use ratios, proportions, and percents (including percents greater than 100 and less than 1) in a variety of situations.

4. Compare and order numbers of all named types.

5. Use whole numbers, fractions, decimals, and percents to represent equivalent forms of the same number.

6. Understand that all fractions can be represented as repeating or terminating decimals.

B. Numerical Operations

1. Use and explain procedures for performing calculations with integers and all number types named above with:
 - Pencil-and-paper
 - Mental math
 - Calculator

2. Use exponentiation to find whole number powers of numbers.

3. Understand and apply the standard algebraic order of operations, including appropriate use of parentheses.

C. Estimation

1. Use equivalent representations of numbers such as fractions, decimals, and percents to facilitate estimation.

Standard 4.2.7: Geometry And Measurement

A. Geometric Properties

1. Understand and apply properties of polygons.
 - Quadrilaterals, including squares, rectangles, parallelograms, trapezoids, rhombi
 - Regular polygons

**New Jersey Core Curriculum Content Grade 7 Alignment to Acellus®
October 6, 2009**

Page 1 of 5
2. Understand and apply the concept of similarity.
 - Using proportions to find missing measures
 - Scale drawings
 - Models of 3D objects

3. Use logic and reasoning to make and support conjectures about geometric objects.

B. Transforming Shapes

1. Understand and apply transformations.
 - Finding the image, given the pre-image, and vice-versa
 - Sequence of transformations needed to map one figure onto another
 - Reflections, rotations, and translations result in images congruent to the pre-image
 - Dilations (stretching/shrinking) result in images similar to the pre-image

2. Recognize that the volume of a pyramid or cone is one-third of the volume of the prism or cylinder with the same base and height (e.g., use rice to compare volumes of figures with same base and height).

C. Coordinate Geometry

1. Use coordinates in four quadrants to represent geometric concepts.
2. Use a coordinate grid to model and quantify transformations (e.g., translate right 4 units).

D. Units of Measurement

1. Solve problems requiring calculations that involve different units of measurement within a measurement system (e.g., 4’3” plus 7’10” equals 12’1”).
2. Select and use appropriate units and tools to measure quantities to the degree of precision needed in a particular problem-solving situation.

E. Measuring Geometric Objects

1. Develop and apply strategies for finding perimeter and area.
 - Geometric figures made by combining triangles, rectangles and circles or parts of circles
 - Estimation of area using grids of various sizes

2. Recognize that the volume of a pyramid or cone is one-third of the volume of the prism or cylinder with the same base and height (e.g., use rice to compare volumes of figures with same base and height).

Standard 4.3.7: Patterns And Algebra

A. Patterns

1. Recognize, describe, extend, and create patterns involving whole numbers, rational numbers, and integers.
 - Descriptions using tables, verbal and symbolic rules, graphs, simple equations or expressions
 - Finite and infinite sequences
 - Generating sequences by using calculators to repeatedly apply a formula

B. Functions and Relationships

1. Graph functions, and understand and describe their general behavior.
 - Equations involving two variables
C. Modeling

1. Analyze functional relationships to explain how a change in one quantity can result in a change in another, using pictures, graphs, charts, and equations.

 - 47. Functions and Equations
 - 48. Graphing Functions

2. Use patterns, relations, symbolic algebra, and linear functions to model situations.
 - Using manipulatives, tables, graphs, verbal rules, algebraic expressions/equations/inequalities
 - Growth situations, such as population growth and compound interest, using recursive (e.g., NOW-NEXT) formulas (cf. science standard 5.5 and social studies standard 6.6)

D. Procedures

1. Use graphing techniques on a number line.
 - Absolute value
 - Arithmetic operations represented by vectors (arrows) (e.g., “-3 + 6” is “left 3, right 6”)

 - 31. Adding Integers
 - 38. Graphing on the Coordinate Plane

2. Solve simple linear equations informally and graphically.
 - Multi-step, integer coefficients only (although answers may not be integers)
 - Using paper-and-pencil, calculators, graphing calculators, spreadsheets, and other technology

 - 38. Graphing on the Coordinate Plane
 - 47. Functions and Equations
 - 48. Graphing Functions

3. Create, evaluate, and simplify algebraic expressions involving variables.
 - Order of operations, including appropriate use of parentheses
 - Substitution of a number for a variable

 - 39. Writing Expressions
 - 40. Writing Equations
 - 41. Simplifying Expressions
 - 43. Addition & Subtraction Equations
 - 44. Multiplication & Division Equations
 - 45. Solving 2-Step Equations

4. Understand and apply the properties of operations, numbers, equations, and inequalities.
 - Additive inverse
 - Multiplicative inverse

Standard 4.4.7: Data Analysis, Probability, And Discrete Mathematics

A. Data Analysis

1. Select and use appropriate representations for sets of data, and measures of central tendency (mean, median, and mode).
 - Type of display most appropriate for given data
 - Box-and-whisker plot, upper quartile, lower quartile
 - Scatter plot
 - Calculators and computer used to record and process information

 - 91. Mean, Median, Mode and Range
 - 92. Bar Graphs
 - 93. Line Graphs
 - 94. Stem-and-Leaf Plots
 - 95. Box-and-Whisker Plots
 - 96. Histograms
 - 97. Appropriate Data Displays

2. Make inferences and formulate and evaluate arguments based on displays and analysis of data.

 - 97. Appropriate Data Displays

B. Probability

1. Interpret probabilities as ratios, percents, and decimals.

 - 98. Introduction to Probability

2. Model situations involving probability with simulations (using spinners, dice, calculators and computers) and theoretical models.
 - Frequency, relative frequency

 - 98. Introduction to Probability

3. Estimate probabilities and make predictions based on experimental and theoretical probabilities.

 - 98. Introduction to Probability

4. Play and analyze probability-based games, and discuss the concepts of fairness and expected value.

 - 98. Introduction to Probability

C. Discrete Mathematics—Systematic Listing and Counting

1. Apply the multiplication principle of counting.
 - Permutations: ordered situations with replacement (e.g., number of possible license plates) vs. ordered situations without replacement (e.g., number of possible slates of 3 class officers from a 23 student class)

 - 101. The Counting Principle
 - 102. Permutations & Combinations
2. Explore counting problems involving Venn diagrams with three attributes (e.g., there are 15, 20, and 25 students respectively in the chess club, the debating team, and the engineering society; how many different students belong to the three clubs if there are 6 students in chess and debating, 7 students in chess and engineering, 8 students in debating and engineering, and 2 students in all three?).

3. Apply techniques of systematic listing, counting, and reasoning in a variety of different contexts.

D. Discrete Mathematics—Vertex-Edge Graphs and Algorithms

1. Use vertex-edge graphs to represent and find solutions to practical problems.
 - Finding the shortest network connecting specified sites
 - Finding the shortest route on a map from one site to another
 - Finding the shortest circuit on a map that makes a tour of specified sites

Standard 4.5.7: Mathematical Processes

A. Problem Solving

1. Learn mathematics through problem solving, inquiry, and discovery.
2. Solve problems that arise in mathematics and in other contexts.
 - Open-ended problems
 - Non-routine problems
 - Problems with multiple solutions
 - Problems that can be solved in several ways
3. Select and apply a variety of appropriate problem-solving strategies (e.g., “try a simpler problem” or “make a diagram”) to solve problems.
4. Pose problems of various types and levels of difficulty.
5. Monitor their progress and reflect on the process of their problem solving activity.
6. Distinguish relevant from irrelevant information, and identify missing information.

B. Communication

1. Use communication to organize and clarify their mathematical thinking.
 - Reading and writing
 - Discussion, listening, and questioning
2. Communicate their mathematical thinking coherently and clearly to peers, teachers, and others, both orally and in writing.
3. Analyze and evaluate the mathematical thinking and strategies of others.
4. Use the language of mathematics to express mathematical ideas precisely

C. Connections

1. Recognize recurring themes across mathematical domains (e.g., patterns in number, algebra, and geometry).
2. Use connections among mathematical ideas to explain concepts (e.g., two linear equations have a unique solution because the lines they represent intersect at a single point).
3. Recognize that mathematics is used in a variety of contexts outside of mathematics.
4. Apply mathematics in practical situations and in other disciplines.
5. Trace the development of mathematical concepts over time and across cultures (cf. world languages and social studies standards).
6. Understand how mathematical ideas interconnect and build on one another to produce a coherent whole.

D. Reasoning

1. Recognize that mathematical facts, procedures, and claims must be justified.
2. Use reasoning to support their mathematical conclusions and problem solutions.
3. Select and use various types of reasoning and methods of proof.
4. Rely on reasoning, rather than answer keys, teachers, or peers, to check the correctness of their problem solutions.
5. Make and investigate mathematical conjectures.
 - Counterexamples as a means of disproving conjectures
 - Verifying conjectures using informal reasoning or proofs.
6. Evaluate examples of mathematical reasoning and determine whether they are valid.

E. Representations
1. Create and use representations to organize, record, and communicate mathematical ideas.
 - Concrete representations (e.g., base-ten blocks or algebra tiles)
 - Pictorial representations (e.g., diagrams, charts, or tables)
 - Symbolic representations (e.g., a formula)
 - Graphical representations (e.g., a line graph)
2. Select, apply, and translate among mathematical representations to solve problems.
3. Use representations to model and interpret physical, social, and mathematical phenomena.

Acellus Courses Support this Standard.

F. Technology
1. Use technology to gather, analyze, and communicate mathematical information.
2. Use computer spreadsheets, software, and graphing utilities to organize and display quantitative information.
3. Use graphing calculators and computer software to investigate properties of functions and their graphs.
4. Use calculators as problem-solving tools (e.g., to explore patterns, to validate solutions).
5. Use computer software to make and verify conjectures about geometric objects.
6. Use computer-based laboratory technology for mathematical applications in the sciences (cf. science standards).

Acellus Courses Support this Standard.

1 Essential Math II
2 Essential Math I